

Motor unit behaviour in voluntary and evoked contractions

Jakob Škarabot

School of Sport, Exercise and Health Sciences

Loughborough University

Figures courtesy of Dr Pearcey (Memorial, CAN / Northwestern, US)

PART 1

- Considerations when quantifying motor unit discharge rate during voluntary (isometric) contractions
- Different types of inputs and their effect on motor unit discharge behaviour
- Quantification of motor unit discharge behaviour in different conditions and populations

The relationship between motor unit recruitment threshold and firing rate

Discharge rate ~ 1 + Contraction*Muscle + Recruitment threshold + (1 | PID)

Quantifying motor unit discharge rate

Jaeger & Jung 2020, Enc Comp Neurosci

Quantifying motor unit discharge rate

Valenčič et al. 2024, J Physiol

Motor unit discharge rate during contractions to failure

Tamara Valenčič

Quantifying motor unit discharge rate

Different types of inputs to motoneurons

Plateau potentials – self-sustained firing of motoneurons

Injected Current (nA)

Prolongation – hysteresis

Gorassini et al. 1998, Neurosci Lett

Discharge rate hysteresis

Beauchamp et al. 2023, J Neural Eng

- Rate-rate correlation R² > 0.7
- Recruitment time difference > 1 s
- Reporter (control) unit discharge rate modulation > 0.5 pps

Orssatto et al. 2021, J Neurophysiol

Modulation of PICs with muscle contraction force

The effect of the rate of force increase on motor unit firing patterns

Inputs to motoneurons are uniquely shaped to support greater contraction force

Low force or rate of synaptic input

High force or rate of synaptic input

Inferring the inhibitory patterns

Baseline

Inferring the inhibitory patterns

Škarabot, Beauchamp & Pearcey, in preparation

A realistic motoneuron model

Simulated inputs to motoneuron pool

Škarabot, Beauchamp & Pearcey, in preparation

Inputs to motoneurons in chronically trained individuals

	RT (n=23)	UT (n=23)	ET (n=23)
Training Age (yrs)	9 ± 3	-	10 ± 4
IPAQ (MET-min/week)	6401± 2729*	4038 ± 2380	6590 ± 2128**
Mass (kg)	84 ± 17**	70 ± 12	68 ± 8
Height (m)	1.75 ± 0.08	1.73 ± 0.08	1.78 ± 0.08
Age (yrs)	23 ± 4	23 ± 3	24 ± 6

Inputs to motoneurons in chronically trained individuals

Škarabot, Thomason et al., in preparation

Inputs to motoneurons in chronically trained individuals

Untrained

Resistance trained

Motoneuron properties in ageing individuals

* Interaction contrast

Connelly et al., in preparation

PART 1 – RECAP

- Motor unit discharge rate should be quantified through the lens of the experimental context
 - Be mindful of selecting the epoch (spike frequency adaptation)
 - Recruitment threshold is a likely covariate to discharge rate quantification that should be considered
- Motor unit discharge rate is non-linearly related to excitation action of persistent inward currents (PIC)
 - The effect of PICs, i.e. amplification and prolongation, may be quantified with a geometric analysis (acceleration) and a paired motor unit analysis (prolongation)
 - Be mindful of the types of inputs that may influence these metrics (as well as the experimental protocol/conditions/sample population)

Questions / break / continue?

NATIONAL CENTRE FOR SPORT & EXERCISE MEDICINE WORKING FOR HEALTH & WELLBEING

HDsEMG decomposition – Asynchronous vs. synchronous firing

5 s

Kalc et al. 2023, IEEE Trans Neural Syst Rehabil Eng Kalc et al. 2023, IEEE Trans Borned Eng Škarabot et al. 2023, J Physiol

1 s

PART 2

- Identification of motor unit discharges during evoked contractions
- Challenges in estimating motor unit recruitment thresholds in conditions of a compressed motor unit recruitment range
- Quantification of motor unit discharge behaviour during voluntary rapid contractions and maximal efforts

500 ms

10 s

Separation vectors – MU filters

500 ms

MU filter application

10 s

MU filter estimation

MU identification during high synchronisation levels

MU identification during varying synchronisation levels

- No identified MUs with recruitment threshold >50% MVC \rightarrow likely low # false negatives
- High levels of precision throughout.
- Comparatively lower sensitivity, indicating some firings might be missed.

Identification of MU firings during evoked contractions – the pipeline

Experimental signals

Estimation of recruitment threshold

Recruitment order

Kalc et al. 2023, IEEE Trans Neural Syst Rehabilitation Eng

Identification of MU firings during evoked contractions from surface EMG

STRENGTHS

- Non-invasive investigation of responses to TMS at the level of single MUs
- Many identified MUs (wide recruitment range)
- Fewer stimuli needed
- Possibility to track units?

WEAKNESSES

- Limited to MUs identified during voluntary efforts
- Limitations of HDsEMG decomposition with BSS still apply:
 - Inability to identify MUs further away from recording site
 - Difficulty in segmenting higherthreshold units due to superimposition of MUAPs
 - Inherent bias towards large MUs with large MUAPs

Feedback (ramp) vs. feedforward (rapid) contractions

Feedback (ramp) vs. feedforward (rapid) contractions

Feedback (ramp) vs. feedforward (rapid) contractions

MU firing behaviour during rapid contractions

Motor unit recruitment order

Motor unit recruitment order

Motor unit recruitment threshold

MU firing rate relative to recruitment threshold during rapid contractions

Motor unit recruitment speed

Motor unit recruitment speed

Motor unit recruitment speed as a function of the upper limit of recruitment

MU firing rate during rapid contractions

Discharge rate initial (pps)

0

1

2

Cluster

3

4

Clusters of MU firing patterns

0.5

1st C.

0.2 0.3 0.4 0.5 time(s)

Spike frequency adaptation

The neural substrate of motor unit behaviour during rapid contractions

30 ms

The neural substrate of motor unit behaviour during rapid contractions

75% MVF

Škarabot et al. 2022, J Neurophysiol

Rapid force production and MU firing in older vs. young individuals

Rapid force production and MU firing in chronically trained individuals

Rapid force production and MU firing in chronically trained individuals

Rapid contractions \rightarrow maximal human in vivo motoneuron output

Rapid contractions → maximal human *in vivo* motoneuron output

Motoneuron output

30 ms

Motor unit behaviour during maximal efforts

Thank you

Collaborators

- Prof Aleš Holobar, Maribor, Slovenia
- Dr Greg Pearcey, Memorial (St. John's), Canada
- Dr Alessandro Del Vecchio, FAU (Erlangen-Nuremberg), Germany
- Dr Drew Beauchamp, Carnegie Mellon (Pittsburgh), USA
- Prof Jonathan Folland, Loughborough, UK
- Dr Mathew Piasecki, Nottingham, UK
- Dr Stefan Kluzek, Nottingham/Oxford, UK
- Dr Jakob Dideriksen, Aalborg, Denmark
- Prof Stuart Baker, Newcastle, UK
- Dr Andrea Casolo, Padova, Italy

<u>Students</u> PhD

- Chris Connelly
- Haydn Thomason
- Tamara Valenčič

MSc

- Jules Forsyth (2021)
- Michael Ho (2022)
- Vedika Mohite (2023)
- Kapil Tyagi (2022)
- Apostolos Vazoukis (2021)
- Yanbin Zhang (2023)

BSc

• Nikki Bonett (2024)

