

From muscles to the brain: MU-based EEG filters

Nina Murks

University of Maribor Faculty of Electrical Engineering and Computer Science Maribor, Slovenia

This project has received funding from the European Union's Horizon Europe Research and Innovation Programme under grant agreement no. 101079392 and from the UK Research and Innovation (UKRI) government's Horizon Europe funding guarantee scheme under grant agreement no. 10052152.

Processing pipeline

Isometric HDEMG model: Convolutive

Convolutive EMG model: matrix form

Matrix of convolution kernels (MUAPs):

Extended vector of pulse sources:

A. Holobar, D. Zazula: Convolution Kernel Compensation, *IEEE Trans. Signal Proc.*, 2007

Data model: MUAPs of Biceps Brachii

Funded by

GA No. 101079392

the European Union

HYBRID

MU 6, 74 chs	MU 7, 48 chs	MU 8, 82 chs	MU 9, 90 chs	MU 10, 84 chs
				ment made and should about about any any magnet
	- The approx approx approx approx approx approx		and and a subse when whe was	
	alper alper alber alber alber are are are and and			- when we are a some some some some ander and
	alper alper alper alper asser are are are are are		men whe whe also also also also and a me	- we when we are a proper of the other of the second of th
	-free after after after after atter atter and and and		and a and a	
	- fre- above where we are a serie			man mar and and and and and and and and and
and the same	- the solution where some source source and a survey		and and and a make when whe whe was a sure	muse muse muse was sure sure and and and
and he are he	-he also also also also also also			
<u></u> 0.16 μV	<u></u> [0.23 μV	<u></u>	_0.18 μν	_0.16 μV

	- for when when were were rear and a rear			
, male male male mare mare more more more more	- for able when when a new and a more			
, and a rad a r	-lor also also also also also also also also			
	- The she she she are and a second and a second		men and a sala sala sala sala sala sala sa	~~~~
- males males makes makes makes makes makes make	- The she when we are a second and a second se		men where we have a set of a set for	~~~~
. and a make make make make make				
, and the market and the and the and the and the and the and the	-fre also when we are and a constants		and and a subse wells and a subse and a subse and	
, and the second the second the second second second second	- for a for action where a construction and a survey	anne anne anne anne anne anne anne anne		
. and for somethic sources are a survey and a	-yer also also also also also also			
_0.16 μV	_0.23 μV	<u></u> 0.35 μV	<u></u> _0.18 μV	-

_0.24 μV

JK Research

GA No. 10052152

and Innovation

MU 13, 84 chs					
when when when when a new					
when whe whe whe					

	MU 14, 90	chs	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		hrhr -	-hrhr
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	uhu vuhu		-hh-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mha mha -	-hh-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	adar audar	-ula ula -	-hh-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	uhun mhun	- when when	ulu ulu
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	uhun mhun	- when when	ulu ulu
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	adar andar	-ula -ula -	-hh-
~~~		mhu mhu -	-hh-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mhar ruhar	mha mha -	~h~ ~h~
	mhur muhur	mhr mhr -	-hrhr
_0.26 μV			

#### **Data model: MUAPs of Soleus**



---------------------I30  $\mu$ V

MU 2, 101 chs



MU 9, 30 chs

-----

-----

and a state water where some state state where advect and

MU 15, 37 chs

-----

╾╴╍**┈╺┉┈┉┉╴┉**┈╺┉╴┷╍╵╍╸┉┱╸┉┱╸┪<mark>╸</mark>╶╂╶_┨╴╴╂╶╶┟╴╶┵

╌┼╌┼╌┼╌┾╌┿╌┿╌┿╴┯╴┯╴┯╴

**Ι**40 μV

#### MU 4, 78 chs



I50  $\mu$ V

MU 10, 28 chs								

**Ι**110 μV



MU 7, 72 chs ---------- ----- ----- ----- ----- ---------------------------------I60  $\mu$ V

		 ······				···· ······ ·			
		 	· ~~~ ~~~	~ ~~ ~~	en sanje na	yn -mm -			
		 	****	~ ~~~	n sode se	44 <b>4 - 19</b> 44444 - 1	<b></b>	•	
		 -an-dan syllesdar				~~~~	***	•	
		 		~~~~				•	
		 ~~~~ ~~~~		* ~***** ****		los salas -	*****	••	~
	-	 		* ***** ***	l <b>Ander</b> o 4-4	en anger a	-44-644	•	~ ~~~
		 ~~~~~		~ ~~~~	~ ~~~	***** -	┿╍╋		
		 ****	•••••		n- 44494 van	14 - 14 14 -	┿╌╍╁	++	
		 			~ ~~~~	- 48,000		e	
		 			~ ~~~ ~~				
15	0 μV								

MU 8, 103 chs

MU 14, 25 chs

Ι140 μV

Ι100 μV

Ι100 μV

Ι140 μV

Ι150 μV

Convolution Kernel Compensation (CKC)

A. Holobar, D. Zazula: Convolution Kernel Compensation, IEEE Trans. Signal Proc., 2007

HDEMG model: $\vec{y}(n) = H\vec{t}(n)$

GA No. 10052152

GA No. 101079392

Correlation matrixes

Correlation matrix of measurements: $C_y = \sum_n \vec{y}(n) \vec{y}(n)$

Correlation matrix of pulse trains: $C_t = \sum_n \vec{t}(n) \vec{t}(n)$

$$C_{y} = \sum_{n} \vec{y}(n) \vec{y}(n) \longleftarrow \vec{y}(n) = H\vec{t}(n)$$
$$C_{y} = HC_{t}H^{t}$$

MU Filter: $y(n_0)^T C_y^{-1}$

Data model: Correlation matrix of extended measurements

Biceps brachii $C_{\bar{v}}$

Soleus $C_{\bar{y}}$

Correlation matrix of pulse trains $C_{\bar{t}}$ **is (close to) diagonal**

HYBRID NEURO

Convolution Kernel Compensation (CKC)

A. Holobar, D. Zazula: Convolution Kernel Compensation, IEEE Trans. Signal Proc., 2007

HDEMG model: $\vec{y}(n) = H\vec{t}(n)$

HDEMG correlation matrix: $C_y = HC_t H^t$

Example 1: The first approximation of MU filter

MU Filter:
$$y(n_0)^T C_y^{-1}$$

MU spike train estimation: $y(n_0)^T C_y^{-1} y(n) = \vec{t}(n_0)^T C_t^{-1} \vec{t}(n)$

If MUs are asynchronous: $\vec{t}(n_0)^T \vec{t}(n)$

Data model: correlation matrix of pulse trains

Data model: correlation matrix of pulse trains

Convolution Kernel Compensation (CKC)

A. Holobar, D. Zazula: Convolution Kernel Compensation, IEEE Trans. Signal Proc., 2007

HDEMG model: $\vec{y}(n) = H\vec{t}(n)$

HDEMG correlation matrix: $C_y = HC_t H^t$

Example 2: The optimal MU filter -

MU Filter: $C_{\overline{t_i},y}^T C_y^{-1}$

MU spike train estimation: $c_{\vec{t}_i,y}^T C_y^{-1} y(n) = c_{\vec{t}_i,\vec{t}}^T C_t^{-1} \vec{t}(n)$

If MUs are asynchronic:
$$c_{\vec{t}_i,\vec{t}}^T \vec{t}(n)$$

MU filter estimation & optimization

Processing pipeline

DEMUSE tool

KC: pic_sol_6.otb+ - BR2023-SO	L				-		×
Properties About CKC							د د
load signals	ter	mporal filter: 20 - 500	Hz 🛛 🗹 diff mode				
		spatial filter	No filter 🗸				
load results	save results	✓ remove line interfer.	auto sel. chs.(%) 95				1 3
concat. signals & results			manual chs selection				✓ 12
load MU firings	save MU firings						< 11
							1 10
decompose	stop decomposing	draw	decomp. runs: 30				9
redecompose	batch decompose	✓entire signal	epoch offset (s): 0				8
	batch MU track		epoch length (s): 261.81				7
CKC inspector			decompose sections	5 📃 🗖			6
							5
							4
plot signals	plot spectra	selected MU	: MU 1 🗸				3
plot MU firings	plot MU PTs	sort MUs by	∕no sort				2
plot MU firing rates	plot MUs statistics		MU up MU down				1
animate MUAPs	plot MUAPs	■all MUs	delete MU		Δ	$\land \land$	
plot MUAP trains	plot MUAP residual		delete empty MUs	1 2	3	4 5	

CKC inspector

MU spike outliers removal

GA No. 101079392

GA No. 10052152

MU spike outliers removal

GA No. 101079392

GA No. 10052152

Adding missed firings

Adding missed firings

Iterative spike-based MU optimization

Iterative spike-based MU optimization

Merged MU

MU 1

MU 2

Five steps of consideration for deleting MU

- 1. PNR < 24 dB.
- 2. At least 3 different heights in amplitude of PT.
- 3. Irregular and strange MUAP shapes.
- 4. The IDR panel doesn't have a clear firing pattern during different phases of contraction (ramp up, hold, ramp down).
- 5. MU has < 10 firings.

MUs that should be deleted

GA No. 101079392

GA No. 10052152

MUs that should be deleted

GA No. 101079392

MUs that should be deleted

Applying MU filter to the EEG (CKC)

MU spike train estimation: $\hat{t}_i(n) = \mathbf{c}_{\bar{t}_i, EMG}^T \mathbf{C}_{EMG}^{-1} EMG(n)$

EEG component estimation: $\hat{s}_i(n) = \mathbf{c}_{cst, EEG}^T \mathbf{C}_{EEG}^{-1} EEG(n)$

EMG to EEG filter transfer: convolutive EEG model

$$t_j(n) = \sum_{k=0}^{K_j} \delta\left(n - k\frac{f_s}{f_j} - d_j - \Delta d_{jk}\right)$$

j=1,...,J,

- d_i is the common firing time lag due to the transmission from cortex,
- Δd_{jk} is MU firing time variability, $\Delta d_{jk} \sim N(0, \sigma_{\Delta d_j})$,
- f_i is the motor unit discharge frequency,
- f_s is the sampling frequency
- K_i is the number of discharges in the observed time interval.

The EEG signals were simulated as comprising ten (J = 10) mutually orthogonal sinusoids $s_j(n)$ and their first higher harmonics as input signals:

$$s_j(n) = a(n) \cdot \left(B \cdot sin(2\pi f_j n - \phi_j) + H_1 \cdot sin(4\pi f_j n - \phi_j) \right),$$

The amplitude B was set equal to 1, whereas the amplitude of the first harmonic, H_1 , was varied across simulations and set to 0, 0.2, 0.4, 0.6, 0.8 and 1

Experimental conditions

Holobar et al. Front. Neurol., 2018

wrist

EEG/EMG synchronization

EEG-EMG Coherence

Holobar et al. Front. Neurol., 2018

FC1

10

20

1

0.75

0.25

0.5

0

0

1

0.75

0.25

0.5

0

0

FC2

10

20

FC3

10

20

coherence

0.75

0.5

0

0

0.25

0.75

0.5

0

0

0.25

FCz

10

20

Inverse tomography and MU related EEG activity

Questions?

This project has received funding from the European Union's Horizon Europe Research and Innovation Programme under grant agreement no. 101079392 and from the UK Research and Innovation (UKRI) government's Horizon Europe funding guarantee scheme under grant agreement no. 10052152.